Omnium profecto artium medicina nobilissima.
(Hippocratus)
 

Из всех наук, безусловно, медицина самая благородная. (Гиппократ)  


E-mail: svetodarR@inbox.lv        +37129180549 (Латвия) ; +79166848121 (Россия)

Оздоровление
Здоровый образ жизни
Авторские методики
Учебные программы
Мудрость веков
Ценное для души
Интересное о разном
Опасно для здоровья
.

 

Озо́н (от др.-греч.ζω— пахну) — состоящая из трёхатомных молекул O3 аллотропная модификация кислорода. При нормальных условиях — голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы.

 

Строение озона

Обе связи O-O в молекуле озона имеют одинаковую длину 1,272 Å. Угол между связями составляет 116,78°[2]. Центральный атом кислорода sp²-гибридизован, имеет одну неподелённую пару электронов. Порядок каждой связи — 1,5, резонансные структуры — с локализованной одинарной связью с одним атомом и двойной — с другим, и наоборот. Молекула полярна, дипольный момент — 0,5337 D[3].

 

История открытия

Впервые озон обнаружил в 1785 году голландский физик М. ван Марум по характерному запаху и окислительным свойствам, которые приобретает воздух после пропускания через него электрическихискр, а также по способности действовать на ртуть при обыкновенной температуре, вследствие чего она теряет свой блеск и начинает прилипать к стеклу[4]. Однако как новое вещество он описан не был, ван Марум считал, что образуется особая «электрическая материя».

Термин озон был предложен немецким химиком X. Ф. Шёнбейном в 1840 году за его пахучесть, вошёл в словари в конце XIX века. Многие источники именно ему отдают приоритет открытия озона в 1839 году. В 1840 году Шёнбейн показал способность озона вытеснять иод из иодида калия[4]:

Эту реакцию используют для качественного определения озона с помощью фильтровальной бумаги, пропитанной смесью растворов крахмала и иодида калия (иодкрахмальной бумаги) — она в озоне синеет ввиду взаимодействия выделяющегося иода с крахмалом[5].

Факт уменьшения объёма газа при превращении кислорода в озон экспериментально доказали Эндрюс и Тэт при помощи стеклянной трубки с манометром, наполненной чистым кислородом, со впаянными в неё платиновыми проводниками для получения электрического разряда[4].

 

Физические свойства

 Молекулярная масса — 48 а.е.м.

 Плотность газа при нормальных условиях — 2,1445 г/дм³. Относительная плотность газа по кислороду 1,5; по воздуху — 1,62 (1,658[6]).

 Плотность жидкости при −183 °C — 1,71 г/см³

 Температура кипения — −111,9 °C. Жидкий озон — тёмно-фиолетового цвета.

 Температура плавления — −197,2 ± 0,2 °С (приводимая обычно т.пл. −251,4 °C ошибочна, так как при её определении не учитывалась большая способность озона к переохлаждению)[7]. В твёрдом состоянии — чёрного цвета с фиолетовым отблеском.

 Растворимость в воде при 0 °С — 0,394 кг/м³ (0,494 л/кг), она в 10 раз выше по сравнению с кислородом.

 В газообразном состоянии озон диамагнитен, в жидком — слабопарамагнитен.

 Запах — резкий, специфический «металлический» (по Менделееву — «запах раков»). При больших концентрациях напоминает запах хлора. Запах ощутим даже при разбавлении 1 : 100000.

 

Химические свойства

Образование озона проходит по обратимой реакции:

Молекула О3 неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно за несколько десятков минут[8] превращается в O2 с выделением тепла. Повышение температуры и понижение давления увеличивают скорость перехода в двухатомное состояние. При больших концентрациях переход может носить взрывной характер. Контакт озона даже с малыми количествами органических веществ, некоторых металлов или их окислов резко ускоряет превращение.

В присутствии небольших количеств HNO3 озон стабилизируется, а в герметичных сосудах из стекла, некоторых пластмасс или чистых металлов озон при низких температурах (—78 °С) практически не разлагается.

Озон — мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины и иридия) до их высших степеней окисления. Окисляет многие неметаллы. Продуктом реакции в основном является кислород.

Озон повышает степень окисления оксидов:

Эта реакция сопровождается хемилюминесценцией. Диоксид азота может быть окислен до азотного ангидрида:

Озон реагирует с углеродом при нормальной температуре с образованием диоксида углерода:

Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония:

Озон реагирует с водородом с образованием воды и кислорода:

Озон реагирует с сульфидами с образованием сульфатов:

С помощью озона можно получить Серную кислоту как из элементарной серы, так и из диоксида серы:

Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:

В газовой фазе озон взаимодействует с сероводородом с образованием двуокиси серы:

В водном растворе проходят две конкурирующие реакции с сероводородом, одна с образованием элементарной серы, другая с образованием серной кислоты:

Обработкой озоном раствора иода в холодной безводной хлорной кислоте может быть получен перхлорат иода(III):

Твёрдый нитрилперхлорат может быть получен реакцией газообразных NO2, ClO2 и O3:

Озон может участвовать в реакциях горения, при этом температуры горения выше, чем с двухатомным кислородом:

Озон может вступать в химические реакции и при низких температурах. При 77 K (-196 °C), атомарный водород взаимодействует с озоном с образованием супероксидного радикала с димеризацией последнего[9]:

Озон может образовывать неорганические озониды, содержащие анион O3. Эти соединения взрывоопасны и могут храниться только при низких температурах. Известны озониды всех щелочных металлов (кроме франция). KO3, RbO3, и CsO3 могут быть получены из соответствующих супероксидов:

Озонид калия может быть получен и другим путём из гидроксида калия[10]:

NaO3 и LiO3 могут быть получены действием CsO3 в жидком аммиаке NH3 на ионообменные смолы, содержащие ионы Na+ или Li+[11]:

Обработка озоном раствора кальция в аммиаке приводит к образованию озонида аммония, а не кальция[9]:

Озон может быть использован для удаления марганца из воды с образованием осадка, который может быть отделён фильтрованием:

Озон превращает токсичные цианиды в менее опасные цианаты:

Озон может полностью разлагать мочевину[12] :

Взаимодействие озона с органическими соединениями с активированным или третичным атомом углерода при низких температурах приводит к соответствующим гидротриоксидам.

 

Получение озона

Основная статья: Озонатор

Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п.

В промышленности его получают из воздуха или кислорода в озонаторах действием электрического разряда. Сжижается O3 легче, чем O2, и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Тот же процесс протекает в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

В лаборатории озон можно получить взаимодействием охлаждённой концентрированной серной кислоты с пероксидом бария[5]:

 

Биологические свойства

Высокая окисляющая способность озона и образование во многих реакциях с его участием свободных радикалов кислорода определяют его высокую токсичность. Воздействие озона на организм может приводить к преждевременной смерти[13].

Наиболее опасное воздействие высоких концентраций озона в воздухе:

 на органы дыхания прямым раздражением;

 на холестерин в крови человека с образованием нерастворимых форм, приводящим к атеросклерозу;

 на органы размножения у самцов всех видов животных, в том числе и человека (вдыхание этого газа убивает мужские половые клетки и препятствует их образованию). При долгом нахождении в среде с повышенной концентрацией этот газ может стать причиной мужского бесплодия.

Озон в Российской Федерации отнесён к первому, самому высокому классу опасности вредных веществ. Нормативы по озону:

 максимальная разовая предельно допустимая концентрация (ПДК м.р.) в атмосферном воздухе населённых мест 0,16 мг/м³[14];

 среднесуточная предельно допустимая концентрация (ПДК с.с.) в атмосферном воздухе населённых мест 0,03 мг/м³[14];

 предельно допустимая концентрация (ПДК) в воздухе рабочей зоны 0,1 мг/м³.

При этом, порог человеческого обоняния приближённо равен 0,01 мг/м³[15].

Озон эффективно убивает плесень и бактерии.

 

Применение озона

Основная статья: Озонирование

Применение озона обусловлено его свойствами:

сильного окисляющего реагента:

                   для стерилизации изделий медицинского назначения

                   при получении многих веществ в лабораторной и промышленной практике

                   для отбеливания бумаги

                   для очистки масел

 сильного дезинфицирующего средства:

                   для очистки воды и воздуха от микроорганизмов (озонирование)

                   для дезинфекции помещений и одежды

                   для озонирования растворов, применяемых в медицине (как для внутривенного, так и для контактного применения).

Одним из существенных достоинств озонирования, по сравнению с хлорированием, является отсутствие[15] токсинов в обработанной воде, тогда как при хлорировании возможно образование существенного количества хлорорганических соединений, многие из которых токсичны, например, диоксина и лучшая, по сравнению с кислородом, растворимость в воде.

По заявлениям озонотерапевтов, здоровье человека значительно улучшается при лечении озоном (наружно, перорально, внутривенно и экстракорпорально), однако ни одно объективное клиническое исследование не подтвердило сколько-нибудь выраженный терапевтический эффект. Более того, при использовании озона в качестве лекарственного средства (особенно при непосредственном воздействии на кровь пациента) доказанный риск его мутагенного, канцерогенного и токсического воздействия перевешивает любые теоретически возможные положительные эффекты, поэтому практически во всех развитых странах озонотерапия не признаётся лекарственным методом, а её применение в частных клиниках возможно исключительно с информированного согласия пациента[16].

В XXI веке многие фирмы начали выпуск так называемых бытовых озонаторов, предназначенных также для дезинфекции помещений (подвалов, комнат после вирусных заболеваний, складов, заражённых бактериями и грибками вещей), зачастую умалчивая о мерах предосторожности, столь необходимых при применении данной техники.

Применение жидкого озона

Давно рассматривается применение озона в качестве высокоэнергетического и вместе с тем экологически чистого окислителя в ракетной технике[17]. Общая химическая энергия, освобождающаяся при реакции сгорания с участием озона, больше, чем для простого кислорода, примерно на одну четверть (719 ккал/кг). Больше будет, соответственно, и удельный импульс. У жидкого озона большая плотность, чем у жидкого кислорода (1,35 и 1,14 г/см3 соответственно), а его температура кипения выше (−112 °C и −183 °C соответственно), поэтому в этом отношении преимущество в качестве окислителя в ракетной технике больше у жидкого озона. Однако препятствием является химическая неустойчивость и взрывоопасность жидкого озона с разложением его на O и O2, при котором возникает движущаяся со скоростью около 2 км/с детонационная волна, и развивается разрушающее детонационное давление более 3*107 дин/см2, что делает применение жидкого озона невозможным при нынешнем уровне техники[18].

 

Озон в атмосфере

Атмосферный (стратосферный) озон является продуктом воздействия солнечного излучения на атмосферный (О 2) кислород. Однако тропосферный озон является загрязнителем, который может угрожать здоровью людей и животных, а также повреждать растения.

Считается, что молнии Кататумбо являются крупнейшим одиночным генератором тропосферного озона на Земле.

 

См. также

 Ионизирующее излучение

 

Примечания

1  Holleman, Wiberg: Lehrbuch der Anorganischen Chemie. ss. 91–100. Auflage. de Gruyter, 1985, S. 460.

2  Takehiko Tanaka; Yonezo Morino. Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states // Journal of Molecular Spectroscopy. — 1970. — Vol. 33. — P. 538—551.

3  Kenneth M. Mack; J. S. Muenter. Stark and Zeeman properties of ozone from molecular beam spectroscopy // Journal of Chemical Physics. — 1977. — Vol. 66. — P. 5278-5283.

4  Перейти к: 1 2 3 С. С. Колотов, Д. И. Менделеев.Озон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

5  Перейти к: 1 2 Получение озона и его определение — видеоопыт в Единой коллекции цифровых образовательных ресурсов

6  Справочник химика, т. II. Л., «Химия», 1971.

7  Карякин Ю. В., Ангелов И. И. Чистые химические вещества. — М.: Химия, 1974.

8  Earth Science FAQ: Where can I find information about the ozone hole and ozone depletion?

9  Перейти к: 1 2 Horvath M., Bilitzky L., & Huttner J., 1985. «Ozone.» pg 44-49

10          Housecroft & Sharpe, 2005. «Inorganic Chemistry.» pg 439

11          Housecroft & Sharpe, 2005. «Inorganic Chemistry.» pg 265

12          Horvath M., Bilitzky L., & Huttner J., 1985. «Ozone.» pg 259, 269—270

13          National Academy of Sciences: Link Between Ozone Air Pollution and Premature Death Confirmed

14          Перейти к: 1 2 Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест. Гигиенические нормативы 2.1.6.1338-03

15          Перейти к: 1 2 Озон — мирное оружие XXI века — Костромской научно-исследовательский институт сельского хозяйства

16          Questionable methods of cancer management: hydrogen peroxide and other 'hyperoxygenation' therapies, American Cancer Society

17          Перспективные окислители.

18          The Dynamics of Unsteady Detonation in Ozone

Ссылки[править | править вики-текст]

 Озон — Химическая энциклопедия.

 Озон — не всегда хорошо // Наука и жизнь : журнал. — 1992. — № 8. — С. 155.

  

 

  Чрезвычайно опасные вещества

 

 

АкролеинБензпиренБериллийВинилхлоридДихромат калияДиметилртутьДиоксиныДиэтилртутьЗоманЛинданОзонОксиды свинцаПентахлордифенилПолонийПлутонийПротактинийРтуть (суммарно) • СтрихнинТаллийТеллурТетраэтилоловоТетраэтилсвинецТрихлордифенилФтороводородХлорокись фосфораЦианид калияЦианид натрияЦиановодородЭндринЭтилмеркурхлорид

 


 

 




 

 

      

       Категории: Чрезвычайно опасные веществаОзонОкислителиСигнальные молекулы газообразных веществ

 

 

 
   
 
  Created by I.am.human.lv & www.90.lv